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Game Theory: Basic Concepts

Each discipline of the social sciences rules comfortably within its
own chosen domain: : : so long as it stays largely oblivious of the
others.

Edward O. Wilson (1998):191

3.1 Big John and Little John

Big John and Little John eat coconuts, which dangle from a lofty branch of

a palm tree. Their favorite coconut palm produces only one fruit per tree.

To get the coconut, at least one of them must climb the tree and knock the

coconut loose so that it falls to the ground. Careful energy measurements
show that a coconut is worth 10 Kc (kilocalories) of energy, the cost of

running up the tree, shaking the coconut loose, and running back down to

the ground costs 2 Kc for Big John, but is negligible for Little John, who

is much smaller. Moreover, if both individuals climb the tree, shake the

coconut loose, then climb down the tree and eat the coconut, Big John gets

7 Kc and Little John gets only 3 Kc, because Big John hogs most of it; if
only Big John climbs the tree, while Little John waits on the ground for the

coconut to fall, Big John gets 6 Kc and Little John gets 4 Kc (Little John

eats some before Big John gets back down from the tree); if only Little John

climbs the tree, Big John gets 9 Kc and Little John gets 1 Kc (most of the

food is gone by the time Little John gets there).

What will Big John and Little John do if each wants to maximize net

energy gain? There is one crucial issue that must be resolved: who decides
first what to do, Big John or Little John? There are three possibilities:

(a) Big John decides first; (b) Little John decides first; (c) both individuals

decide simultaneously. We will go through the three cases in turn.

Assuming Big John decides first, we get the situation depicted in Fig. 3.1.

We call a figure like this a game tree, and we call the game it defines an

extensive form game. At the top of the game tree is the root node (the little
dot labeled “Big John”) with two branches, labeled w (wait) and c (climb).
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This means Big John gets to choose and can go either left (w) or right (c).

This brings us to the two nodes labeled “Little John,” in each of which Little
John can wait (w) or climb (c).

Little John Little John

Big John
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Figure 3.1. Big John and Little John: Big John chooses first.

While Big John has only two strategies, Little John actually has four:

a. Climb no matter what Big John does (cc).

b. Wait no matter what Big John does (ww).

c. Do the same thing Big John does (wc).

d. Do the opposite of what Big John does (cw).

The first letter in parenthesis indicates Little John’s move if Big John waits,

and the second is Little John’s move if Big John climbs.

We call a move taken by a player at a node an action, and we call a series

of actions that fully define the behavior of a player a strategy—actually
a pure strategy, in contrast to “mixed” and “behavioral” strategies, which

we will discuss later, that involve randomizing. Thus, Big John has two

strategies, each of which is simply an action, while Little John has four

strategies, each of which is two actions—one to be used when Little John

goes left, and one when Little John goes right.

At the bottom of the game tree are four nodes, which we variously call

leaf or terminal nodes. At each terminal node is the payoff to the two
players, Big John (player 1) first and Little John (player 2) second, if they

choose the strategies that take them to that particular leaf. You should check

that the payoffs correspond to our description above. For instance, at the

leftmost leaf when both wait, with neither John expending or ingesting en-

ergy, the payoff is (0,0). At the rightmost leaf both climb the tree, costing

Big John 2 Kc, after which Big John gets 7 Kc and Little John gets 3 Kc.
Their net payoffs are thus (5,3). And similarly for the other two leaves.
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How should Big John decide what to do? Clearly, Big John should figure

out how Little John will react to each of Big John’s two choices, w and c. If
Big John chooses w, then Little John will choose c, because this pays 1 Kc

as opposed to 0 Kc. Thus, Big John gets 9 Kc by moving left. If Big John

chooses c, Little John will choose w, because this pays 4 Kc as opposed to

3 Kc for choosing c. Thus Big John gets 4 Kc for choosing c, as opposed to

9 Kc for choosing w. We now have answered Big John’s problem: choose

w.
What about Little John? Clearly, Little John must choose c on the left

node, but what should he choose on the right node? Of course it doesn’t

really matter, because Little John will never be at the right node. However,

we must specify not only what a player does “along the path of play” (in this

case the left branch of the tree), but at all possible nodes on the game tree.

This is because we can only say for sure that Big John is choosing a best

response to Little John if we know what Little John does, and conversely. If
Little John makes a wrong choice at the right node, in some games (though

not this one) Big John would do better by playing c. In short, Little John

must choose one of the four strategies listed above. Clearly, Little John

should choose cw (do the opposite of Big John), because this maximizes

Little John’s payoff no matter what Big John does.

Conclusion: the only reasonable solution to this game is for Big John to
wait on the ground, and Little John to do the opposite of what Big John

does. Their payoffs are (9,1). We call this a Nash equilibrium (named after

John Nash, who invented the concept in about 1950). A Nash equilibrium

in a two-player game is a pair of strategies, each of which is a best response

to the other; i.e., each gives the player using it the highest possible payoff,

given the other player’s strategy.
There is another way to depict this game, called its strategic form or nor-

mal form. It is common to use both representations and to switch back

and forth between them, according to convenience. The normal form cor-

responding to Fig. 3.1 is in Fig. 3.2. In this example we array strategies of

player 1 (Big John) in rows, and the strategies of player 2 (Little John) in

columns. Each entry in the resulting matrix represents the payoffs to the

two players if they choose the corresponding strategies.
We find a Nash equilibrium from the normal form of the game by trying to

pick out a row and a column such that the payoff to their intersection is the

highest possible for player 1 down the column, and the highest possible for

player 2 across the row (there may be more than one such pair). Note that
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Figure 3.2. Normal form of Big John and Little John when Big John moves first.

.w; cw/ is indeed a Nash equilibrium of the normal form game, because 9

is better than 4 for Big John down the cw column, and 1 is the best Little

John can do across the w row.

Can we find any other Nash equilibria to this game? Clearly .w; cc/ is
also a Nash equilibrium, because w is a best reply to cc and conversely. But

the .w; cc/ equilibrium has the drawback that if Big John should happen to

make a mistake and play c, Little John gets only 3, whereas with cw, Little

John gets 4. We say cc is weakly dominated by cw, meaning that cw pays

off at least as well for Little John no matter what Big John does, but for at

least one move of Big John, cw has a higher payoff than cc for Little John
(�4.1).

But what if Little John plays ww? Then Big John should play c, and it is

clear that ww is a best response to c. So this gives us another Nash equilib-

rium, .c; ww/, in which Little John does much better, getting 4 instead of

1, and Big John does much worse, getting 4 instead of 9. Why did we not

see this Nash equilibrium in our analysis of the extensive form game? The
reason is that .c; ww/ involves Little John making an incredible threat (see

�4.2 for a further analysis of Little John’s incredible threat).

“I don’t care what you do, says Little John—I’m waiting here on the

ground—no matter what.” The threat is “incredible” because Big John

knows that if he plays w, then when it is Little John’s turn to carry out

the threat to play w, Little John will not in fact do so, simply because 1 is

better than 0.1 We say a Nash equilibrium of an extensive form game is
subgame perfect if, at any point in the game tree, the play dictated by the

Nash equilibrium remains a Nash equilibrium of the subgame. The strat-

egy .c; ww/ is not subgame perfect because in the subgame beginning with

Little John’s choice of w on the left of Fig. 3.1 is not a best response. Nice

try, anyway, Little John!

1This argument fails if the individuals can condition his behavior in one day on their
behavior in previous days (see chapter 9). We assume the players cannot do this.
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But what if Little John gets to choose first? Perhaps now Little John can

force a better split than getting 1 compared to Big John’s 9. This is the
extensive form game (Fig. 3.3). We now call Little John player 1 and Big

John player 2. Now Big John has four strategies (the strategies that belonged

to Little John in the previous version of the game) and Little John only has

two (the ones that belonged to Big John before). Little John notices that

Big John’s best response to w is c, and Big John’s best response to c is w.

Because Little John gets 4 in the first case and only 1 in the second, Little
John chooses w. Big John’s best choice is then cw, and the payoffs are

(4,4). Note that by going first, Little John is able to precommit to a strategy

that is an incredible threat when going second.
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Figure 3.3. Big John and Little John: Little John chooses first.

The normal form for the case when Little John goes first is illustrated in

Fig. 3.4. Again we find the two Nash equilibria (w; cc) and (w; cw), and

again we find another Nash equilibrium not evident at first glance from the
game tree: now it is Big John who has an incredible threat, by playing ww,

to which Little John’s best response is c.

The final possibility is that the players choose simultaneously or, equiv-

alently, each player chooses an action without seeing what the other player

chooses. In this case, each player has two options: climb the tree (c), or

wait on the ground (w). We then get the situation in Fig. 3.5. Note the new

element in the game tree: the dotted line connecting the two places where
Little John chooses. This is called an information set. Roughly speaking,

an information set is a set of nodes at which (a) the same player chooses,

and (b) the player choosing does not know which particular node represents

the actual choice node. Note also that we could just as well interchange Big

John and Little John in the diagram, reversing their payoffs at the termi-

nal nodes, of course. This illustrates an important point: there may be more
than one extensive form game representing the same real strategic situation.
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Figure 3.4. Normal form of Big John and Little John game when Little John moves

first.

Even though there are fewer strategies in this game, it is hard to see what
an equilibrium might be by looking at the game tree. This is because what

Little John does cannot depend on which choice Big John makes, because

Little John does not see Big John’s choice. So let’s look at the normal

form game, in Fig. 3.6. From this figure, it is easy to see that both .w; c/

and .c; w/ are Nash equilibria, the first obviously favoring Big John and

the second favoring Little John. In fact, there is a third Nash equilibrium
that is more difficult to pick out. In this equilibrium Big John randomizes

by choosing c and w with probability 1=2, and Little John does the same.

This is called a mixed strategy Nash equilibrium; you will learn how to

find and analyze it in �3.7. In this equilibrium Big John has payoff 4:5 and

Little John has payoff 2. The reason for this meager total payoff is that with

probability 1=4, both wait and get zero reward, and sometimes both climb
the tree!
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Figure 3.5. Big John and Little John choose simultaneously.
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Figure 3.6. Big John and Little John: normal form in the simultaneous move case.
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3.2 The Extensive Form

An extensive form game G consists of a number of players, a game tree, and

a set of payoffs. A game tree consists of a number of nodes connected by

branches. Each branch connects a head node to a distinct tail node If b is

a branch of the game tree, we denote the head node of b by bh, and the tail

node of b by bt .
A path from node a to node a0 in the game tree is a sequence of branches

starting at a and ending at a0.2 If there is a path from node a to a0, we say a

is an ancestor of a0, and a0 is a successor to a. We call k the length of the

path. If a path from a to a0 has length one, we call a the parent of a0, and

a0 is a child of a.

We require that the game tree have a unique node r , called the root node,
that has no parent, and a set T of nodes called terminal nodes or leaf nodes,

that have no children. We associate with each terminal node t 2 T (2
means “is an element of”), and each player i , a payoff �i.t/ 2 R (R is the

set of real numbers). We say the game is finite if it has a finite number of

nodes. We assume all games are finite, unless otherwise stated.

We also require that the graph of G have the following tree property.

There must be exactly one path from the root node to any given terminal
node in the game tree. Equivalently, every node except the root node has

exactly one parent.

Players relate to the game tree as follows. Each nonterminal node is

assigned to a player who moves at that node. Each branch b with head

node bh node represents a particular action that the player assigned to bh

that node can take there, and hence determines either a terminal node or the
next point of play in the game—the particular child node bt to be visited

next.3

If a stochastic event occurs at a node a (for instance, the weather is Good

or Bad, or your partner is Nice or Nasty), we assign the fictitious player

“Nature” to that node, the actions Nature takes representing the possible

outcomes of the stochastic event, and we attach a probability to each branch
of which a is the head node, representing the probability that Nature chooses

that branch (we assume all such probabilities are strictly positive).

2Technically, a path is a sequence b1; : : : ; bk of branches such that bh
1 D a, bt

i D bh
iC1

for i D 1; : : : k � 1, and bt
k

D a0; i.e., the path starts at a, the tail of each branch is the

head of the next branch, and the path ends at a0.
3Thus if p D .b1; : : : ; bk/ is a path from a to a0, then starting from a, if the actions

associated with the bj are taken by the various players, the game moves to a0.
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The tree property thus means that there is a unique sequence of moves

by the players (including Nature) leading from the root node to any specific
node of the game tree, and for any two nodes, there is at most one sequence

of player moves leading from the first to the second.

A player may know the exact node in the game tree when it is his turn

to move (e.g., the first two cases in Big John and Little John, above), but

he may know only that he is at one of several possible nodes. This is the

situation Little John faces in the simultaneous choice case (Fig. 3.6). We
call such a collection of nodes an information set. For a set of nodes to form

an information set, the same player must be assigned to move at each of the

nodes in the set and have the same array of possible actions at each node.

We also require that if two nodes a and a0 are in the same information set

for a player, the moves that player made up to a and a0 must be the same.

This criterion is called perfect recall, because if a player never forgets his

moves, he cannot make two different choices that subsequently land him in
the same information set.4

Suppose each player i D 1; : : : ; n chooses strategy si . We call s D
.s1; : : : ; sn/ a strategy profile for the game, and we define the payoff to

player i , given strategy profile s, as follows. If there are no moves by

Nature, then s determines a unique path through the game tree, and hence

a unique terminal node t 2 T . The payoff �i.s/ to player i under strategy
profile s is then defined to be simply �i .t/.

Suppose there are moves by Nature, by which we mean that a one or

more nodes in the game tree, there is a lottery over the various branches

emanating from that node, rather than a player choosing at that node. For

every terminal node t 2 T , there is a unique path pt in the game tree from

the root node to t . We say pt is compatible with strategy profile s if, for
every branch b on pt , if player i moves at bh (the head node of b), then si

chooses action b at bh. If pt is not compatible with s, we write p.s; t/ D 0.

If pt is compatible with s, we define p.s; t/ to be the product of all the

probabilities associated with the nodes of pt at which Nature moves along

pt , or 1 if Nature makes no moves along pt . We now define the payoff to

4Another way to describe perfect recall is to note that the information sets Ni for

player i are the nodes of a graph in which the children of an information set � 2 Ni are

the �0 2 Ni that can be reached by one move of player i , plus some combination of moves
of the other players and Nature. Perfect recall means that this graph has the tree property.
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player i as

�i .s/ D
X

t2T

p.s; t/�i .t/: (3.1)

Note that this is the expected payoff to player i given strategy profile s,

assuming that Nature’s choices are independent, so that p.s; t/ is just the

probability that path pt is followed, given strategy profile s. We generally

assume in game theory that players attempt to maximize their expected

payoffs, as defined in (3.1).
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Figure 3.7. Evaluating Payoffs when Nature Moves

For example, consider the game depicted in Figure 3.7. Here, Nature

moves first, and with probability pl D 0:6 goes B where the game between

Alice and Bob is known as the Prisoner’s Dilemma (�3.11), and with prob-

ability pl D 0:4 goes S, where the game between Alice and Bob is known

as the Battle of the Sexes (�3.9). Note that Alice knows Nature’s move,

because she has separate information sets on the two branches where Na-
ture moves, but Bob does not, because when he moves, he does not know

whether he is on the left or right hand branch. If we write �A.x; y; z/ and

�B.x; y; z/ for the payoffs to Alice and Bob, respectively, when Alice plays

x 2 fL; Rg, Bob plays y 2 fu; dg, and Nature plays z 2 fB; Sg, then (3.1)

gives, for instance

�A.L; u/ D pu�A.L; u; B/ C pr�A.L; u; S/ D 0:6.4/ C 0:4.6/ D 4:8I
�B.L; u/ D pu�B.L; u; B/ C pr�B.L; u; S/ D 0:6.4/ C 0:4.4/ D 4:0I
�A.R; u/ D pu�A.R; u; B/ C pr�A.R; u; S/ D 0:6.5/ C 0:4.0/ D 3:0I
�B.R; u/ D pu�B.R; u; B/ C pr�B.R; u; S/ D 0:6.0/ C 0:4.0/ D 0I

The reader should fill in the payoffs at the remaining nodes.
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3.3 The Normal Form

The strategic form or normal form game consists of a number of players, a

set of strategies for each of the players, and a payoff function that associates

a payoff to each player with a choice of strategies by each player. More

formally, an n-player normal form game consists of

a. A set of players i D 1; : : : ; n.

b. A set Si of strategies for player i D 1; : : : ; n. We call s D .s1; : : : ; sn/,

where si 2 Si for i D 1; : : : ; n, a strategy profile for the game.5

c. A function �i W S ! R for player i D 1; : : : ; n, where S is the set of

strategy profiles, so �i.s/ is player i’s payoff when strategy profile s is

chosen.

Two extensive form games are said to be equivalent if they correspond to

the same normal form game, except perhaps for the labeling of the actions

and the naming of the players. But given an extensive form game, how

exactly do we form the corresponding normal form game? First, the play-

ers in the normal form are the same as the players in the extensive form.

Second, for each player i , let Si be the set of strategies of that player, each
strategy consisting of a choice of an action at each information set where i

moves. Finally, the payoff functions are given by equation (3.1). If there are

only two players and a finite number of strategies, we can write the payoff

function in the form of a matrix, as in Fig. 3.2.

As an exercise, you should work out the normal form matrix for the game

depicted in Figure 3.7.

3.4 Mixed Strategies

Suppose a player has pure strategies s1; : : : ; sk in a normal form game. A

mixed strategy for the player is a probability distribution over s1; : : : ; sk;
i.e., a mixed strategy has the form

� D p1s1 C : : : C pksk;

where p1; : : : pk are all nonnegative and
Pn

1 pj D1. By this we mean that
the player chooses sj with probability pj , for j D1; : : : ; k. We call pj the

weight of sj in � . If all the pj ’s are zero except one, say pl D1, we say �

5Technically, these are pure strategies, because later we will consider mixed strategies

that are probabilistic combinations of pure strategies.




