Course Behavioral Economics Academic year 2013-2014 Lecture 14 Fairness **Alessandro Innocenti**

LECTURE 14 FAIRNESS

Aim: To analyze the determinants of fairness in economic behavior.

Outline: Fairness and social preferences. Dictator game. Ultimatum game. Fehr and Schmidt's model. Beliefs. Asymmetric payoffs. Framing. Intentions matters.

Readings:

Fehr, E. and K. M. Schmidt (1999). "A Theory of Fairness, Competition, and Cooperation", *The Quarterly Journal of Economics*, 114, 817-868

Bicchieri, C. and J. Zhang (2012) "An Embarrassment of Riches: Modeling Social Preferences in Ultimatum Games", in U. Maki (ed.) *Philosophy of Economics*, San Diego: North Holland, 577-595.

Blogs, Videos and Websites

"The Triumph of the Social Animal" by Chrystia Freeland

http://www.nytimes.com/2012/04/20/world/europe/20iht-letter20.html

Capuchin monkeys reject unequal pay

http://www.youtube.com/watch?v=IKhAd0Tyny0

FAIRNESS AND SOCIAL PREFERENCES

Experimental evidence on

- sharing
- sanctioning
- fairness

Sharing and sanctioning are characterized by reciprocity

Kindness vs. kindness

Unfairness vs. (costly) sanctions

Individual heterogeneity

Preference for fairness

Given two outcomes, individuals by and large will prefer the fairest one

DICTATOR GAME

Two players: Dictator and Recipient

Dictator gets amount X and decides how to allocate X between Recipient (s) and Dictator (X-s)

Most common results

- – Average offer $s \approx 0.2$
- Most common offers: 0 and 0.4 0.5
- s increases with :
- Non-anonymity
- Identifiable recipient
- "Deserving" recipient (e.g. Amnesty)
- S decrease with:
- "Earned" initial amount

Option to "pass"

ULTIMATUM GAME

Fehr and Schmidt (1999)

Proposer gets \$1 and propose a share s to the respondent Respondent accepts (payoffs (1 - s,s)) or rejects (payoffs (0,0)) Most common strategy s = .3

Market game with multiple proposers

- -1 responder and n-1 proposers
- R accepts the highest offer
- empirically s = 1

Market game with multiple responders

- n 1 responders and 1 proposer
- if at least one responder accepts, the contract is executed
 (responder share is divided between all responders that accepted)
- empirically s = 0

UG FINDINGS

One-shot, anonymous Ugs

Modal and median UG offers are 40/50%

Means are 30/40%

Offers of 40/50% rarely rejected

Offers below 20% rejected about half the time

Explanations

- Preference for fairness
- Negative/positive reciprocity of perceived intentions
- Altruism, generosity

Social norms

FEHR AND SCHMIDT'S MODEL

People dislike inequality: they care about own payoffs and differences between their payoffs and others'

Player i's utility for the allocation $(x_1, ..., x_n)$ is:

$$U_{i}(x_{1},...,x_{n}) = x_{i} - \frac{\alpha_{i}}{n-1} \sum_{j} \max(x_{j} - x_{i},0) - \frac{\beta_{i}}{n-1} \sum_{j} \max(x_{i} - x_{j},0)$$

" α " can be considered as an envy weight, and " β " as a guilt weight $0 < \beta_i < \alpha_i$, and $\beta_i < 1$

people dislike advantageous inequality less than disadvantageous inequality

Fehr-Schmidt is a consequentialist model: an agent's utility is completely determined by the final distribution of outcomes — his and others' material payoffs

BELIEFS

Rabin emphasizes the role of actual actions and beliefs in determining utility.

HP: The proposer is asking what type of responder she is facing.

If her belief about the type of the responder is a probability distribution P on α_2 and β_2 .

When $\beta_1 > 1/2$, the proposer's rational choice does not depend on what P is.

When $\beta_1 < 1/2$, however, the proposer may seek to maximize the expected utility:

$$EU(x) = P(\alpha_2 M / (1 + 2\alpha_2) < x) \times ((1 - \beta_1)M - (1 - 2\beta_1)x)$$

Therefore, the behavior of a rational proposer in UG is determined by her own type (β_1) and her belief about the type of the responder.

The experimental data suggest that for many proposers, either β is big ($\beta > 1/2$) or their estimate of the responder's α is big.

ASYMMETRIC PAYOFFS Kagel et al. (1996)

- Chips have higher (three times more) values for the proposer, and only the proposer knows it
- in this case the offer is very close to half of the chips and the rejection rate is low
- people merely prefer to appear fair, as a really fair person is supposed to offer about 75% of the chips

"Fairness in Ultimatum Games with Asymmetric Information and Asymmetric Payoffs" Kagel, J Kim, C & Moser, D (1996) *Games and Economic Behavior* **13** 100-110.

FRAMING Hoffman et al. (1985)

- UG with groups of twelve participants were ranked on a scale 1-12 either randomly or by superior performance in answering questions about current events.
- The top six were assigned to the role of "proposer/seller" and the rest to the role of "responder/buyer".
- Significantly lowered offers, but rejection rates were unchanged as compared to the standard Ultimatum game.

INTENTIONS MATTER Fehr et al. (2003)

• UG with only two choices: either offer 2 (and keep 8) or make an alternative offer that varies across treatments:

(5,5), (8,2), (2,8) and (10,0)

- When the (8,2) offer is compared to the (5,5) alternative, the rejection rate is 44.4%
- It decreases to 27% if the alternative is (2,8), and further decreases to9% if the alternative is (10,0).
- the rejection rate depends a lot on what the alternative is

"On the Nature of Fair Behavior" Falk, Fehr, Fischbacher (2003)

SUMMARY

- > Preference for fairness is not unconditional
- Ambiguity allows self-serving biases
- > Fairness depends on expectations
- Fairness depends on contexts and framing
- Intentions matter

Research questions

What grounds expectations?

How do we map contexts into preferences?